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Outline
• Previous Results

– Implemented LETKF on NASA fvGCM
– Assimilate simulated grid point observations

• Current Results
– Assimilate simulated rawinsonde observations
– Comparison of PSAS and LETKF for perfect model
– In spite of implementation challenges, LETKF obtains a superior

analysis than PSAS
• Planned Experiments

– Running experiments with real rawinsonde observations
– Preparing to assimilate AIRS retrievals
– Will assimilate AIRS radiances
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NASA finite-volume GCM
   The NASA finite-volume GCM(fvGCM) is a

quasi-operational weather forecasting model.

    It has 72 zonal, 46 meridional grid-points and 55
levels.

   It has highly accurate numerics but it is very
different from other models (e.g., surface
pressure is not a prognostic variable)
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Local Ensemble Transform Kalman Filter
(LETKF, Hunt 2006)

• Forecast step

• Analysis step

 LETKF is an ensemble based
Kalman Filter

 Do not require adjoint or
Jacobian for the analysis

a

i

f

i m
1!= xx

1 1
1a a

i i

f a T

i i
! !

!
= +

x x
P M P M Q

))(( f

i

o

ii

f

i

a

i h xyKxx !+=

f

iinn

a

i PHKIP ][ !=
"

1
][
!

+= RHHPHPK
Tf

i

Tf

ii

Tff

Tff

i

f
K

i

f

ii

k

xxxx
k

XX

P

•
!

=

!!
!

" #
=

1

1

))((
1

1

1

Tff

i

f
K

i

f

i

f

xhxhxhxh
k

))()()()()((
1

1

1

!!
!

"

#
=

T
HHP



5

Local Ensemble Transform Kalman Filter

The state estimate is updated
at the central grid red dot

All observations (purple
diamonds) within the local
region are assimilated

Perform Data Assimilation in local patch (3D-window)



6

Advantages of LETKF
 Matrix computations are done in
     a very low-dimensional space: both

accurate and efficient, needs small
ensemble.

 The analysis is computed independently

     at each grid point, could be highly parallel!

  Very fast! 5 minutes in a 20 PC

    cluster with 40 ensemble members.

  Model independent, and also do not
     require adjoint of the model.

  It knows about the “errors of the day”
through Pf.
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     Snapshot of background
error (colored area)

    and analysis increment
(contour)

Errors of the Day

    PSAS cannot
account for the

errors of the day!!

PSAS
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Errors of the Day
PSAS

LETKF

    PSAS cannot
account for the

errors of the day!!

    LETKF does
account for the

errors of the day!!



9

LETKF Implementation Challenges

• Very limited computational resources (shared
cluster of 20 PC’s)

• Model has a very high top and strong
instabilities at the top

• Must tune parameters of scheme

• Adaptation of existing forward operators to our
scheme
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Data Assimilation on NASA fvGCM with
LETKF

 Experimental Design:

Perfect model scenario: A “true” trajectory is generated by
integrating the fvGCM model for several months.

Simulated rawinsonde observations: The observations are the
truth plus observational error as operational one. They are at
rawinsonde locations. The observation types include: zonal
wind(u), meridional wind (v), and geopotential height (H)

Inflation scheme : Multiplicative inflation is used.
Local patch size : Change with latitude based on the
observation coverage.
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Real rawinsonde observation locations

00Z rawinsonde observation distribution
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500hPa analysis RMS error (Global average)
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500hPa analysis RMS error (Northern Hemisphere average)
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500hPa analysis RMS error (Southern Hemisphere average)
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Feb. average analysis RMS error at different levels (Global
average)

Zonal Wind Temperature
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Time mean of zonal mean analysis RMS error
(averaged over February) and dynamical state

(contour)
Zonal Wind

RMS error difference between
LETKF and PSAS

RMS error of LETKF
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Analysis RMS error (Global average):
Solving a LETKF challenge
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Conclusions
 For simulated rawinsonde observations, with operational

possible ensemble member(40), LETKF is much better than
NASA PSAS analyses after the spin-up time. The percentage
improvement is up to 50% in Southern Hemisphere, most
areas is between 30% and 40%.

 LETKF captures the error of the day, while PSAS cannot.

 LETKF is an efficient and parallel method of data assimilation.
5 minutes in a 20 PC cluster with 40 ensemble members.

 LETKF can use the nonlinear observation operator and does
not require Jacobian or the adjoint. We can compare different
nonlinear forward operators.
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Starting now real observation experiments:
first rawinsondes, then AIRS retrievals

 Planned experiments:
1) Real rawinsonde observations: The observation types

include: zonal wind (u), meridional wind (v), temperature
(T), specific humidity (q), and sea level pressure (SLP).

2) Add AIRS retrievals: T, q with high density coverage

3) Rawinsondes plus clear AIRS radiances: This is more
accurate but has fewer locations.

(Because we do not require the Jacobian and adjoint, we can
use L. Strow’s observation operator)

4) AIRS data impact: Compare analyses and forecasts to
estimate the impact of AIRS alone.

Will have to optimize LETKF parameters
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